JARQUE_BERA
 
 The JARQUE_BERA node is based on a numpy or scipy function. The description of that function is as follows:
    Perform the Jarque-Bera goodness of fit test on sample data.
    The Jarque-Bera test tests whether the sample data has the skewness and kurtosis matching a normal distribution.
    Note that this test only works for a large enough number of data samples (>2000) as the test statistic asymptotically has a Chi-squared distribution with 2 degrees of freedom.  Params:    select_return : 'jb_value', 'p'  Select the desired object to return.
See the respective function docs for descriptors.   x : array_like  Observations of a random variable.     Returns:    out : DataContainer  type 'ordered pair', 'scalar', or 'matrix'    
 
   Python Code
from flojoy import OrderedPair, flojoy, Matrix, Scalar
import numpy as np
from typing import Literal
import scipy.stats
@flojoy
def JARQUE_BERA(
    default: OrderedPair | Matrix,
    select_return: Literal["jb_value", "p"] = "jb_value",
) -> OrderedPair | Matrix | Scalar:
    """The JARQUE_BERA node is based on a numpy or scipy function.
    The description of that function is as follows:
        Perform the Jarque-Bera goodness of fit test on sample data.
        The Jarque-Bera test tests whether the sample data has the skewness and kurtosis matching a normal distribution.
        Note that this test only works for a large enough number of data samples (>2000) as the test statistic asymptotically has a Chi-squared distribution with 2 degrees of freedom.
    Parameters
    ----------
    select_return : 'jb_value', 'p'
        Select the desired object to return.
        See the respective function docs for descriptors.
    x : array_like
        Observations of a random variable.
    Returns
    -------
    DataContainer
        type 'ordered pair', 'scalar', or 'matrix'
    """
    result = scipy.stats.jarque_bera(
        x=default.y,
    )
    return_list = ["jb_value", "p"]
    if isinstance(result, tuple):
        res_dict = {}
        num = min(len(result), len(return_list))
        for i in range(num):
            res_dict[return_list[i]] = result[i]
        result = res_dict[select_return]
    else:
        result = result._asdict()
        result = result[select_return]
    if isinstance(result, np.ndarray):
        result = OrderedPair(x=default.x, y=result)
    else:
        assert isinstance(
            result, np.number | float | int
        ), f"Expected np.number, float or int for result, got {type(result)}"
        result = Scalar(c=float(result))
    return result