TRIMBOTH
 
 The TRIMBOTH node is based on a numpy or scipy function. The description of that function is as follows:
    Slice off a proportion of items from both ends of an array.
    Slice off the passed proportion of items from both ends of the passed array
    (i.e., with 'proportiontocut' = 0.1, slices leftmost 10% and rightmost 10% of scores).
    The trimmed values are the lowest and highest ones.
    Slice off less if proportion results in a non-integer slice index (i.e. conservatively slices off 'proportiontocut').  Params:    a : array_like  Data to trim.   proportiontocut : float  Proportion (in range 0-1) of total data set to trim of each end.   axis : int or None  Axis along which to trim data.
Default is 0.
If None, compute over the whole array 'a'.     Returns:    out : DataContainer  type 'ordered pair', 'scalar', or 'matrix'    
 
   Python Code
from flojoy import OrderedPair, flojoy, Matrix, Scalar
import numpy as np
import scipy.stats
@flojoy
def TRIMBOTH(
    default: OrderedPair | Matrix,
    proportiontocut: float = 0.1,
    axis: int = 0,
) -> OrderedPair | Matrix | Scalar:
    """The TRIMBOTH node is based on a numpy or scipy function.
    The description of that function is as follows:
        Slice off a proportion of items from both ends of an array.
        Slice off the passed proportion of items from both ends of the passed array
        (i.e., with 'proportiontocut' = 0.1, slices leftmost 10% and rightmost 10% of scores).
        The trimmed values are the lowest and highest ones.
        Slice off less if proportion results in a non-integer slice index (i.e. conservatively slices off 'proportiontocut').
    Parameters
    ----------
    a : array_like
        Data to trim.
    proportiontocut : float
        Proportion (in range 0-1) of total data set to trim of each end.
    axis : int or None, optional
        Axis along which to trim data.
        Default is 0.
        If None, compute over the whole array 'a'.
    Returns
    -------
    DataContainer
        type 'ordered pair', 'scalar', or 'matrix'
    """
    result = scipy.stats.trimboth(
        a=default.y,
        proportiontocut=proportiontocut,
        axis=axis,
    )
    if isinstance(result, np.ndarray):
        result = OrderedPair(x=default.x, y=result)
    else:
        assert isinstance(
            result, np.number | float | int
        ), f"Expected np.number, float or int for result, got {type(result)}"
        result = Scalar(c=float(result))
    return result